C⁎-algebras from planar algebras II: The Guionnet–Jones–Shlyakhtenko C⁎-algebras
نویسندگان
چکیده
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولLocal tracial C*-algebras
Let $Omega$ be a class of unital $C^*$-algebras. We introduce the notion of a local tracial $Omega$-algebra. Let $A$ be an $alpha$-simple unital local tracial $Omega$-algebra. Suppose that $alpha:Gto $Aut($A$) is an action of a finite group $G$ on $A$ which has a certain non-simple tracial Rokhlin property. Then the crossed product algebra $C^*(G,A,alpha)$ is a unital local traci...
متن کاملA Class of C∗-algebras Generalizing Both Graph Algebras and Homeomorphism C∗-algebras Ii, Examples
We show that the method to construct C∗-algebras from topological graphs, introduced in our previous paper, generalizes many known constructions. We give many ways to make new topological graphs from old ones, and study the relation of C∗-algebras constructed from them. We also give a characterization of our C∗-algebras in terms of their representation theory.
متن کاملIsomorphisms in unital $C^*$-algebras
It is shown that every almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...
متن کاملResearch Article Schur Algebras over C -Algebras
Let be a C∗-algebra with identity 1, and let s( ) denote the set of all states on . For p,q,r ∈ [1,∞), denote by r( ) the set of all infinite matrices A= [ajk]j,k=1 over such that the matrix (φ[A[2]]) [r] := [(φ(ajkajk))]j,k=1 defines a bounded linear operator from p to q for all φ∈ s( ). Then r( ) is a Banach algebra with the Schur product operation and norm ‖A‖ = sup{‖(φ[A[2]])‖ : φ∈ s( )}. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2014
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2014.08.024